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Abstract
Molecular dynamics simulations of the reaction A + B → C + B for identical
soft spheres in three dimensions have been performed to study the influence of
the concentration of B (quencher) on the reaction rate. Many interesting results
have been found. For the deterministic systems (liquid and gas), an increase in
the quencher concentration decreased the reaction rate coefficient, k(t), in the
long-time limit but it increased k(t) at short times. For the Brownian systems the
excess in k(t) was positive and, except for very short times, constant. Both for
the liquids and the Brownian systems the excess in relative spatial correlations
between reagents was strongly correlated with the excess in k(t). The long-
time behaviour of the excess in k(t) for the gas was qualitatively similar to that
for liquids but the origin of the phenomenon was not the same. For the gas,
the excess in k(t) was mainly caused by the excess in the mean radial velocity
between A and B, which was completely negligible for the dense liquid and the
Brownian system.

1. Introduction

In this paper recent computer investigations on the phenomenon of the influence of the
concentration of B (called quencher or trap) on the rate of the reaction A + B → C + B are
presented and discussed. The reaction is an example of the so-called diffusion controlled
reaction. The first theory of the kinetics of the problem, the Smoluchowski approach [1, 2],
assumed that the influence of quencher concentration on the reaction rate coefficient can be
neglected. Modern theories [3–8] take the influence of the quencher–quencher interactions into
account. Theoretical works on the quencher concentration dependence effect (QCDE) for the
case of reaction studied here can be also found in the literature [9–11]. But the theories are
simplified since the problem of the QCDE is very complex. One of the questions is the role
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of fluctuations. According to theoretical predictions for some reaction schemes [12–15] the
fluctuations and many particle effects may dramatically change the asymptotic behaviour as
compared to that predicted by the Smoluchowski approach.

Computer simulations are a good tool to model diffusion-controlled reactions but the
problem of the QCDE has drawn very little attention. Zhou and Szabo [16] simulated the
bimolecular irreversible reaction for different concentrations of quencher but the effect was
treated only in a very qualitative way. The interactions between reactants moving in a Brownian
medium were also taken into account in the simulation of Senapati et al [17].

The problem of the QCDE was attacked by computer simulations for the first time
in 2005 [18]. Obtaining quantitative results appeared to be not easy and the first
simulations, performed using the standard molecular dynamics method, showed only that
for the investigated liquids the QCDE decreased the reaction rate in the long-time limit.
Further simulations have been performed by applying the method of prerecorded trajectory of
Gorecki [19–21], which enabled one to consider chemical systems corresponding to 107–109

particles. Many interesting and surprising results have been obtained and analysed [21–23].
The most important of the results and the simulation method are presented and discussed in
this work.

2. The model and some useful formulae

The following irreversible reaction

A + B → C + B (2.1)

for spherical molecules A, B, and C in three-dimensional bulk liquid is considered. It
is assumed that the molecules are mechanically identical and differ only in their chemical
properties. The reaction (2.1) is instantaneous and the reaction probability, p(r, t), does not
depend on the position of other particles. Thus

p(r, t) =
{

1 if r � a

0 if r > a
(2.2)

where r is the distance between A and B and a is the reaction radius.
The quantity obtained directly from simulations is the number of A particles as a function

of time, NA(t), that gives the surviving probability for A:

S(t, c) = NA(t)/NA(0). (2.3)

S(t, c) is related to the rate coefficient of the reaction, k(t, c), by

S(t, c) = exp

(
−c

∫ t

0
k(τ, c) dτ

)
. (2.4)

Because of random errors inherent in simulations, it is more useful to analyse the results not
with k(t, c) but with its value averaged over the time interval �t :

〈k(t, c)〉�t ≡ 1

�t

∫ t+�t/2

t−�t/2
k(τ, c) dτ = ln(NA(t − �t/2)/NA(t + �t/2))

c�t
. (2.5)

The excess in the survival probability due to a finite quencher concentration can be defined as

�S = S(t, c) − S0(t, c) (2.6)

where:

S0(t, c) = lim
c′→0

(S(t, c′)c/c′
). (2.7)
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Since A, B and C are mechanically identical, �S can be obtained by comparing the
systems characterized by the same number density, ρ, and temperature, T , and differing only
in the concentrations of reagents. It is useful to define the function Fc(t):

S(t, c) = S0(t, c)(1 − Fc(t)c
2). (2.8)

The above is in accordance (to O(c3)) with the density expansion for the time dependence of
S(t, c) of diffusing particles in the presence of randomly distributed diffusing traps [24].

According to equations (2.4) and (2.8), Fc(t) is strictly correlated with the excess in k(t, c):

�k ≡ k(t, c) − k(t, c → 0) = c
∂ Fc

∂ t
(1 − Fc(t)c

2)−1. (2.9)

The value of Fc(t) can be evaluated from the following formula:

Fc(t) = 1 − R

c(c − c0 R)
+ O(Fc(t)

2c2
0) (2.10)

where

R = S(t, c)

S(t, c0)c/c0
.

Relation (2.10) is more useful than (2.8) and (2.7) since the condition c0 → 0 is not necessary.

3. The setup for computer experiments

The computer simulations were performed using a molecular dynamics method [25] on systems
of the total number of particles, N , enclosed in a cubic box of the volume, V . Periodic boundary
conditions were applied [25]. The A, B, and C particles differed only in their chemical
identification parameters, and interacted with the soft sphere potential of the following form:

u(r) =

⎧⎪⎨
⎪⎩

ε[exp(α(1 − r/σ)) − 1/3] for r/σ � RS = 1.0
ε(α3/12)(r/σ − RC)3 for RS < r/σ � RC = RS + 2/α

0 for r/σ > RC

(3.1)

where α = 25.0, ε and σ are the energy and size parameters. A crucial property of the
above potential is that it enables very fast evaluation of interparticle forces. For liquids, the
computation time for a given N has been reduced over three times when compared to the
previous simulations [18] in which the cut-off distance of the potential used was 1.65σ . This
allowed for a significant increase in the accuracy of ‘measurements’. For r/σ < RS the
potential (3.1) is very strongly repulsive so, especially for low and moderate densities, one can
expect the obtained liquid structure to be similar to hard sphere ones. This may be important
for the interpretation of results and, first of all, for possible further analytical works. The
mathematical form of (3.1) and the relationship RC = RS + 2/α make ∂u/∂r differentiable for
all r . The value of RS (here, equal to 1.0) determines the border of the strong repulsion and
σ RC is the cut-off distance. All numerical values presented further are expressed in the reduced
units (i.e. for σ = ε = m = 1.0, where m is the particle mass).

Most of the simulations were performed for a = σ , which, according to (3.1),
corresponded to a non-zero value of the activation energy. The case when the energy was 0
(i.e. a/σ = RC = 1.08) was also considered.

Two kinds of system were simulated: deterministic systems (both liquid and gas) and
Brownian ones. The deterministic systems were simulated by applying the classical molecular
dynamics NVE [25] method in which the Newton equations of motion were solved by using
the Verlet ‘leapfrog’ algorithm [25, 26]. In the Brownian systems the time evolution of the
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particle coordinates (ri , vi ) were obtained from the Verlet scheme [25, 26] mixed with the
Euler–Maruyama approximation for the stochastic term [27]. The resulting procedure was

vi (t + δt/2) = vi (t − δt/2) − δt

m

(
N∑

i=1

∂u(r i j)

∂ri j
+ kBT

DB
vi(t)

)
+ ξ̄i

kBT

m

√
2δt/DB

ri (t + δt) = ri (t) + vi(t + δt/2)δt

(3.2)

where DB is the diffusion constant imposed by the Brownian medium, ξ̄i is a three-dimensional
random variable normally distributed, kB is the Boltzmann constant and

vi (t) = (vi (t + δt/2) + vi(t − δt/2))/2.

Both for the classical and the Brownian systems the time step δt was equal to 0.01σ(m/ε)1/2.
During the chemical process considered the system was always in the mechanical

equilibrium state. Initially, at t = 0, the B components were assigned to randomly selected
particles. All the remaining particles were marked as A (C was absent). If at t = 0 the
condition (2.2) was fulfilled, A was converted to C immediately and was not taken into account
in the evaluation of S(t, c). For t > 0, the reaction (2.1) was realized by relabelling A to C
according to (2.2) and the condition was checked once per time step.

Two kinds of test have been performed for selected values of simulation parameters for all
kinds of simulated system. The influence of the length of δt was tested by comparing the results
with additional simulations for δt = 0.005σ(m/ε)1/2. No significant difference between the
results for different δt have been found. The randomness of the initial distribution of reagents
was checked by performing additional simulations in which B components were assigned to
the particles well before the moment that the reaction started. The fact that A and B diffused
in space for a long time before the reaction started did not have any influence on the results
obtained.

In first simulations of the QCDE [18] the inaccuracy of ‘measurements’ appeared to be a
very serious problem. One of the ways applied here to improve the efficiency of computations
was the adequate choice of u(r) (see (3.1)); another was the optimization of the computer
program and the application of a method more suitable for the considered reaction model.
The computer program has been modified as to perform many reaction runs going on at the
same time during a single simulation run. Each reaction started at different trun and went for
the total reaction time, tT. The ‘distance’ between subsequent trun was always so high that
the reaction runs could be treated as independent ones. The technique described above has
been combined with the method of prerecorded trajectory [19–21], which benefits from the
fact that the reaction (2.1) does not disturb the physical evolution of the system. The method
considers a chemical system built up of L3 subsystems obtained by translating positions of
the particles of the basic N-particle system L times in each of three (x, y, z) directions. The
‘physical part’ of time evolution is realized by repeating the evolution of the basic system in
each of the subsystems. But the chemical process occurs in the whole system, treating all
the particles and their images (obtained by the translation) as real reagents. As a result, from
the point of view of the chemical process, the system evolves as being composed of N × L3

particles, which increases the accuracy of the ‘measurements’ many times when compared to
that for the basic system. Another advantage of the method is that it significantly decreases
the scale of the possible inconsistency between the results for different numbers of reagents
(the size effect). It has been shown that for L = 1 an inconsistency may appear when the
number fraction of A reaches a very low value [21]. The above procedure was applied for all
the simulations presented here. The simulations were carried out for N = 216 000–2299 986
and L = 3–7. The largest system corresponded to nearly 109 reagents (2299 986 × 343 for the
liquid of number density ρ = 0.72). For each of the simulation points (given ρ, T, c) series
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Figure 1. The reduced averaged rate coefficient, 〈k∗(t, c)〉 = 〈k(t, c)〉�t /(4π Da) (from (2.5)), for
the low-density liquid for a = σ . Empty circles, c = 0.0144; filled circles, c = 5.86 × 10−5. The
averaging of k(t, c) has been preformed over the time intervals of the length of 28.0. All values are
in reduced units. The error bars give the standard deviation.

of independent reaction runs (each for different trun) were performed. The number of runs was
never lower than four. This enabled us to estimate the error for each of the simulation point by
evaluating the standard deviation for the series [21]. More information on the optimization and
other simulation details can be found in [21–23].

Six different systems each for a few values of c were simulated: a gas (number density
ρ = 0.0288, mutual diffusion constant D = 17.4), a low-density liquid (ρ = 0.72,
D = 0.316), a high-density liquid (ρ = 1.04, D = 0.045), and three Brownian systems (BR1:
ρ = 0.0072, DB = 0.370; BR2: ρ = 0.0288, DB = 0.158; BR3: ρ = 0.0208, DB = 0.0225).
The reduced temperature, kBT/ε, was always 1.25. Here, the mutual diffusion constant D is
equal to double the value of the self-diffusion constant for a simple fluid (physically all the
particles are identical). The values of D were obtained directly from simulations by using the
Einstein formula [25]. The values of DB (see (3.2)) for BR2 and BR3 have been chosen to be
equal to D/2 for the low-density and the high-density liquid respectively.

4. Simulation results and discussion

4.1. General results

One of the results of the simulations is that both for the liquids and the gas considered the
excess in the reaction rate is negative in the long-time limit [21, 23]. As an example, figure 1
presents 〈k(t, c)〉�t for the low-density liquid for two values of c. Considering estimated errors,
it is clearly seen that, for high t , the values of 〈k(t, c)〉�t for higher c (empty circles) are
significantly lower than the values for lower c (filled circles).

The decrease in k(t, c) with increasing c at long times can be also obtained applying (2.9)
to the FC curves presented in figure 2 (the gas).

Analysing figure 1, one can note that for short times 〈k(t, c)〉�t for higher c is higher than
that for lower concentration. The effect is not a result of random deviation. �k for liquids at
short times is positive. Figure 3 shows the time evolutions of Fc for three concentrations of B
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t
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Figure 2. Fc(t) (from (2.10)) for the reaction in the gas for a = σ . The solid line, c = 0.0036;
the dotted line, c = 0.0072; the dashed line, c = 0.0144. Application of (2.9) to the FC(t) curves
shows that after a quite short time �k/c reaches a constant value which is a function of c.

t
0 50 100 150

F
c(
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0

100

200

300

400

500

Figure 3. Fc(t) for different systems. The dashed line: the low-density liquid for a = σ

(D = 0.316). The dotted line: the Brownian system BR2 for a = σ (DB = 0.158). Different
curves within the same denotation represent different concentrations of B: c = 0.0036, 0.0072,
0.0144.

for the low-density liquid (the dashed lines) and for the Brownian system BR2 (the dotted lines).
Considering relation (2.9), the figure illustrates two very surprising results of the simulations.

(1) Both for the low- and the high-density liquid the excess in the rate coefficient was positive
at short times [21]. The excess became negative for large t . The range of the region for
which Fc(t) > 0 depended on ρ and a [23]. The region was very small (or even absent)
for the gas and, in general, increased with ρ.

(2) For all the Brownian systems, the excess in k(t, c) was positive and constant, except for
very short times. This property was checked for the range of times a few times larger than
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in figure 3. In some cases the concentration of A changed by over four orders in magnitude
during the test but any significant deviation from the rule was not observed [22].

The Fc(t) curves from figure 3 look to be independent of c. Some results suggests that,
especially for the Brownian systems, the universality more exactly concerns �k/c than Fc(t)
(see the discussion on figures 3 and 5 in [22]). But, as is evident from figure 2, the universality
does not hold for the gas. A more precise analysis of the curves from figure 2 shows that for
the gas, �k/c also depends on c (see also [23]). The scale of the excess for the gas system
is many times larger than for the Brownian one as well as for the liquid (see figures 2 and 3;
note that the values of c for the three systems are the same). Probably, the universality holds
only if the scale of the process is sufficiently low, which is a consequence of the fact that (2.8)
corresponds to the density expansion [24] truncated to O(c2).

One of the reasons of this strange behaviour of the Brownian systems may be the influence
of A–A and A–C interactions on the rate of the reaction (2.1). To explain this qualitatively,
first note that due to interparticle interactions, D for the Brownian system is not equal to but
is slightly lower than 2DB (see [22]). In the limit c → ρ the mutual diffusion constant for the
reaction is equal to D/2 + DB since A can collide only with B, which leads to the reaction. On
the other hand, for c → 0 the constant for the process is D since A collides infinitely many
times before (2.1) is realized. Therefore, the mutual diffusion constant for the reaction increases
with increasing c, which means that the described mechanism gives a positive contribution to
�k. A deeper analysis and a simple model for the effect (which qualitatively agrees with the
simulation results) are presented in [22].

Szabo has shown [2] that the steady state rate constant for the case of infinitely slow
recombination (kSS) can be evaluated by integrating S(t, c) over time. The results of the long-
time evolutions for liquids [21] have been used to evaluate kSS and, as a result, the excess
values (�kSS) for a wide range of c. This enabled a comparison of the simulation results with
the theoretical predictions for kSS of Felderhof and Deutch [9] and Tokuyama and Cukier [10].
Using Szabo’s formula for kSS for the Smoluchowski model [2] one can show [21] that both
theoretical predictions give the formula for �kSS which in the lowest order in φ(= 4πa3/3)

can be written as

�kSS/(4π Da) = (3/2)φ ln φ + (b0 + 6/π−3)φ + · · · (4.1)

where b0 is a constant that slightly depends on the model. �kSS predicted by (4.1) changes sign
from positive for high c to negative for c → 0. This agrees with the simulations for liquids. The
fact that for high c the excess in kSS is positive is a direct consequence of the presence of a time
interval in which FC > 0 (see figure 3 and [21]). But quantitative differences between (4.1) and
the simulations are very high. The simulation values are over an order of magnitude lower than
the predictions and the value of c for which according to (4.1) �kSS = 0 is about two orders of
magnitude lower than that obtained from simulations [21]. The excess in kSS is proportional to
the integral of �S(t, c). Figure 3 shows that according to (2.8) the integral for the Brownian
system, and as a consequence the excess value, is positive and much higher than that for the
considered liquid. This is closer to the prediction of (4.1) for high c than that for the liquids.
But on the other hand, the results obtained have not shown any tendency for �S(t, c) for the
Brownian systems to change sign with decreasing c, which disagrees with (4.1) that predicts
negative value for c → 0.

4.2. Correlation with the spatial correlations [22]

The simulations for the deterministic liquids and the Brownian systems have shown a strong
correlation between �k and the excess in the relative spatial correlations between A and B
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Figure 4. The excess in the relative spatial correlation, �σAB(l, c, t) (from (4.3)), as a function
of t . The circles: the Brownian system (as in figure 3, l = 4.95; empty: c = 0.0144, filled:
c = 0.0072). The squares: the deterministic liquid (as in figure 3, l = 4.91; empty: c = 0.0144,
filled: c = 0.0072).

defined as

�σAB(l, c, t) = σAB(l, c, t) − σAB(l, c0, t) (4.2)

where

σAB(l, c, t) = 〈nA(t)nB(t)〉l

〈nA(t)〉l〈nB(t)〉l
− 1. (4.3)

nX(t) is current number of the X particles enclosed in an imaginary cell of box-length l, 〈 〉l

is the spatial average over the cell, and c0 is sufficiently low to make the definition (4.2)
reasonable.

The values of �σAB(l, c, t) as a function of t for the Brownian system (the circles) and for
the deterministic liquid (the squares) are presented in figure 4. The data presented in figures 3
and 4 come from the same simulation runs (except for c = 0.0036, which is absent in figure 4).
The correlation between ∂ Fc/∂ t (∼= �k/c) and �σAB(l, c, t)/c is evident. The only small
inconsistency is that the time when �σAB(l, c, t) = 0 for the deterministic system does not
match exactly with that of the maximum of Fc(t) in figure 3.

4.3. Analysis via the two-particle probability density function [23]

It seems obvious that positive or negative values of �σAB(l, c, t) result in an increase or a
decrease (respectively) of the rate of the reaction (2.1). But very recent simulations have
shown that for the gas �σAB(l, c, t) is positive in spite of ∂ Fc/∂ t is negative (as in figure 2).
This completely disagrees with the results for the liquid and the Brownian systems discussed
in section 4.2. The reason is that, strictly speaking, the excess in the reaction rate is not a
consequence of �σAB(l, c, t) itself but it is a direct consequence of the excess in the flux of A
towards B at r = a. The flux can be written as a product of GAB(r, t) (the probability density
function for AB pairs, fAB(r, v, t), integrated over the relative velocity, v) and UAB(r, t) (the
mean value of the radial velocity of A towards B, i.e. the first radial moment). Therefore we

8
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can write

�k(t, c)/k(t, c) = �G(a, t)/G(a, t) + �U(a, t)/U(a, t) (4.4)

where �X means the excess in X and the term �G�U has been neglected.
GAB(r, t), UAB(r, t), and the second radial moment of fAB(r, v, t), denoted as UUAB(r, t),

were ‘measured’ directly during the simulations. The data from a given time t0 to the total time
of the reaction tT were used to evaluate the time averages (denoted as 〈X〉 where X is the value).
The value of t0 was chosen to be high so as to obtain a time average that may be treated as an
asymptotic one. For the gas and the Brownian system, the procedure worked quite well and the
obtained averages should be close to the real asymptotic values. The analysis of the FC curves
from figures 2 and 3 show that, for these systems, �k becomes approximately constant after a
reasonably short time. But for the liquid no tendency for �k to attain a constant value is noted
(figures 1 and 3), which shows that the collected data do not represent the asymptotic state. In
this case t0 were chosen to be well above the time when �k = 0. The obtained time averages
can be only treated as very rough approximations for the asymptotic values; however, it seems
very reasonable to assume the properties of the values to be very close to that for t → ∞.

Averaging (4.4) over long times and neglecting the correlations between 〈�X〉 and
〈X〉, one obtains (4.4) with k, G, U , and the excess values replaced by the time averages.
Equation (4.4) in the averaged form has been used to analyse the influence of �UAB(a, t) and
�GAB(a, t) on the excess in k(t, c). The most important results were as follows.

(1) For the gas, the contribution to �k from 〈�UAB(a, t)〉/〈UAB(a, t)〉 was negative and it
dominated over that from 〈�GAB(a, t)〉/〈GAB(a, t)〉. As a result, �k for the gas was
always negative in spite of 〈�GAB(a, t)〉/〈GAB(a, t)〉 which was negative for a = σ and
positive for a = 1.08σ ;

(2) For the Brownian system, 〈�UAB(a, t)〉/〈UAB(a, t)〉 was equal to 0 (to the accuracy of the
measurements) and �k resulted only from 〈�GAB(a, t)〉/〈GAB(a, t)〉 which was positive.

(3) For the low-density liquid, 〈�UAB(a, t)〉/〈UAB(a, t)〉 depended on a. It was negligible if
a = 1.08σ (the activation energy = 0) and became significant (and negative) if a = σ .
For the high-density liquid (a = σ , the only case considered), 〈�UAB(a, t)〉/〈UAB(a, t)〉
was 0. 〈�GAB(a, t)〉/〈GAB(a, t)〉 was negative for all the liquids considered.

(4) The excess in 〈UUAB(r, t)〉 − 〈UAB(r, t)〉2 was noticeably only for the gas.

The cases (1) and (2) are illustrated in figures 5 and 6 that present 〈�UAB(r, t)〉/〈UAB(a, t)〉
and 〈�GAB(r, t)〉/〈GAB(a, t)〉 for the gas and for the Brownian system BR2 (both for a = σ )
respectively. As is seen in figure 5, the absolute value of 〈�UAB(a, t)〉/〈UAB(a, t)〉 is sig-
nificantly higher than that of 〈�GAB(a, t)〉/〈GAB(a, t)〉. This was fulfilled also for a =
1.08σ ; however, in this case 〈�GAB(r, t)〉/〈GAB(a, t)〉 was positive for all r . The fact that
〈�GAB(r, t)〉 in figure 5 changes sign while approaching r = a is probably a result of the non-
zero activation energy. The effect does not influence 〈�GAB(r, t)〉 for the Brownian system
(figure 6), which is positive for all r . The curves for the Brownian system for a = 1.08σ were
qualitatively very similar to that from figure 6. Note that 〈�UAB(r, t)〉/〈UAB(a, t)〉 in figure 6
is completely negligible when compared to 〈�GAB(r, t)〉/〈GAB(a, t)〉.

Both for the gas and for the Brownian system 〈�GAB(r, t)〉 as a function of r is always
(figure 6) or almost always (figure 5) positive, which results in a positive value of �σAB(l, c, t)
since the latter comes from the integration of �GAB(r, t). The only significant qualitative
difference between 〈�GAB(r, t)〉 for the Brownian system and for the gas is that for the latter;
but only for a = σ does 〈�GAB(r, t)〉 change sign very close to r = a. This suggests the
presence of a relation between the positive values of 〈�GAB(r, t)〉 (and, as a result, positive
�k for the Brownian systems) and a low value of density, here equal to 0.0288 both for the
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Figure 5. 〈�UAB(r, t)〉/〈UAB(a, t)〉 (empty squares) and 〈�GAB(r, t)〉/〈GAB(a, t)〉 (filled
squares) for the gas, a = σ and c = 0.0072.
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Figure 6. As in figure 5 but for the Brownian system BR2, a = σ .

gas and for the Brownian system. For the liquids (ρ = 0.72 and 1.04) in the long-time limit,
〈�GAB(r, t)〉 was negative for a wide range of r .

Negligibility of �UAB(r, t) both for the dense liquid and for the Brownian system (as
in figure 6) suggests that the mechanism that leads to the QCDE depends on the relaxation
time. If the relaxation is sufficiently fast, fAB(r, v, t) depends on c only via a scaling
factor. If it is slow, fAB(r, v, t) deforms much more and the excesses in both UAB(a, t) and
UUAB(a, t)−UAB(a, t)2 are significant. From this point of view the low-density liquid belongs
to a transition region.

The accuracy of ‘measurements’ for the high-density liquid was sufficient to estimate
not only the long-time averages of �UAB(a, t) and �GAB(a, t) but also the time evolutions
(averaging over short time intervals) for nearly all range of time (t > 4.0). The result was that
�UAB(a, t) was approximately zero for all times. The positive excess in k(t, c) that appeared
for short times (see figure 3) was only a result of the positive excess in GAB(a, t). Therefore,
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the strange region of positive excess in k(t, c) for liquids is not a result of a process similar to
that for the gas.

5. Summary

Recent results of molecular dynamics simulation on the influence of the quencher concentration
on the rate of the reaction (2.1) have been presented. The simulations clearly show that for long
times �k both for liquids and for gases is negative. But the reasons for the effect are not only
simply fluctuations in concentrations of reagents. For the gas, the contribution to the excess in
the rate coefficient coming from �UAB(a, t) is more important than that from �GAB(a, t). The
excess in UAB(r, t) becomes 0 both for the dense liquid and for the Brownian system, which
strongly suggests that the reason for the change in the mechanism that results in the QCDE is a
drastic increase in the relaxation rate of fAB(r, v, t) when compared to that for the gas.

One of the most important and surprising results of the simulations is that for a quite long
time for liquids as well as for the whole range for the Brownian systems �k and �σAB(l, c, t)
are positive. The positive excesses in σAB(l, c, t) and in GAB(a, t) for the Brownian system are
probably in some relation with the low value of ρ but the real nature of the effect is not known.
A comment that may be useful in further investigations comes directly from the formulae for
�σAB(l, c, t) ((4.2) and (4.3)). σAB(l, c, t) is the relative value and, in general, it does not
vanish for c → 0. As a result, however, the fluctuations always lead to a decrease in the rate
coefficient, but this does not mean that �k (which is a result of subtraction) is negative. This is
obviously also true for �GAB(a, t) and �UAB(a, t).

One should also mention the fact which differs both real situation and computer
simulations from standard theoretical approaches. In order to evaluate an excess value for a
more or less realistic situation the systems compared must be physically identical. As a result,
the total number of particles per unit volume must be conserved during the reaction as well,
as it cannot change with changing c. As a consequence, the A–A and A–C interactions may
significantly influence the investigated effect. A discussion and a very simple model for the
influence are presented in [22] but the problem is worth more attention.
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